Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction.
نویسندگان
چکیده
Long-term potentiation (LTP) and long-term depression (LTD) are persistent modifications of synaptic strength that have been implicated in learning, memory, and neuronal development. Despite their opposing effects, both forms of plasticity can be triggered by the activation of NMDA receptors. One mechanism proposed for this bidirectional response is that the specific patterns of afferent stimulation producing LTP and LTD activate to different degrees a uniform receptor population. A second possibility is that these patterns activate separate receptor subpopulations composed of different NMDA receptor (NR) subunits. To test this hypothesis we examined the inhibition of LTP and LTD by a series of competitive NMDA receptor antagonists that varied in their affinities for NR2A/B and NR2C/D subunits. The potency for the inhibition of LTP compared with inhibition of LTD varied widely among the agents. Antagonists with higher affinity for NR2A/B subunits relative to NRC/D subunits showed more potent inhibition of LTP than of LTD. D-3-(2-carboxypiperazine-4-yl)-1-propenyl-1-phosphonic acid, which binds to NR2A/B with very high affinity relative to NR2C/D, showed an approximately 1000-fold higher potency for LTP than for LTD. These results show that distinct subpopulations of NMDA receptors characterized by different NR2 subunits contribute to the induction mechanisms of potentiation and depression.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملNitric oxide facilitates long-term potentiation, but not long-term depression.
Reports that nitric oxide synthase (NOS) inhibition prevents the induction of long-term potentiation (LTP) have been controversial. Recent evidence suggests that NO may help to regulate the threshold for LTP induction. We have tested this hypothesis by examining the effects of stimulus frequency and train duration on synaptic plasticity in the presence of either NO donors or NOS inhibitors. Two...
متن کاملCritical differences in magnitude and duration of N-methyl D-aspartate(NMDA) receptor activation between long-term potentiation (LTP) and long-term depression (LTD) induction.
The induction of both long-term potentiation (LTP) and long-term depression (LTD) in the hippocampal CA1 region is triggered by the activation of N-methyl-D-aspartate (NMDA) receptors and the subsequent postsynaptic intracellular Ca2+ increase. However, how NMDA receptor activation differs between LTP and LTD induction is unclear. In the present study, we examined the effects of the magnitude a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2000